
lable at ScienceDirect

Water Research 174 (2020) 115583
Contents lists avai
Water Research

journal homepage: www.elsevier .com/locate/watres
Application of chemometric methods and QSAR models to support
pesticide risk assessment starting from ecotoxicological datasets

Francesco Galimberti a, *, Angelo Moretto a, b, Ester Papa c, **

a ICPS, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Milan, Italy
b Department of Biomedical and Clinical Sciences, Universit�a degli Studi di Milano, Milan, Italy
c QSAR Research Unit in Environmental Chemistry and Ecotoxicology, University of Insubria, Varese, Italy
a r t i c l e i n f o

Article history:
Received 25 October 2019
Received in revised form
10 January 2020
Accepted 1 February 2020
Available online 6 February 2020

Keywords:
Pesticide
QSAR
Ecotoxicology
Endpoint
* Corresponding author. Via G.B. Grassi 74, ICPS, Pa
** Corresponding author. University of Insubria, De
Applied Sciences (DiSTA), via J.H. Dunant 3, 21100, Va

E-mail addresses: francesco.galimberti@icps.it (
uninsubria.it (E. Papa).

https://doi.org/10.1016/j.watres.2020.115583
0043-1354/© 2020 Elsevier Ltd. All rights reserved.
a b s t r a c t

The EFSA ‘Guidance on tiered risk assessment for edge-of-field surface waters’ underscores the importance
of in silico models to support the pesticide risk assessment. The aim of this work was to use in silico
models starting from an available, structured and harmonized pesticide dataset that was developed for
different purposes, in order to stimulate the use of QSAR models for risk assessment. The present work
focuses on the development of a set of in silico models, developed to predict the aquatic toxicity of
heterogeneous pesticides with incomplete/unknown toxic behavior in the water compartment. The
generated models have good fitting performances (R2: 0.75e0.99), they are internally robust (Q2loo: 0.66
e0.98) and can handle up to 30% of perturbation of the training set (Q2 lmo: 0.64e0.98). The absence of
chance correlation was guaranteed by low values of R2 calculated on scrambled responses (R2 Yscr: 0.11
e0.38). Different statistical parameters were used to quantify the external predictivity of the models
(CCCext: 0.73e0.91, Q2 ext-Fn: 0.53e0.96).

The results indicate that all the best models are predictive when applied to chemicals not involved in
the models development. In addition, all models have similar accuracy both in fitting and in prediction
and this represents a good degree of generalization.

These models may be useful to support the risk assessment procedure when experimental data for key
species are missing or to create prioritization lists for the general a priori assessment of the potential
toxicity of existing and new pesticides which fall in the applicability domain.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction as well, as a consequence of the exposure to these products.
Agriculture occupies a very important place in the European
Union (EU) as an economic activity and as a source of food for
population. In the last 50 years, it has gone from a national and
intensive agriculture to a common and sustainable agriculture
[Villaverde et al., 2019]. Pesticides, have a massive role in the
agricultural framework, due to the fact that they have always
been widely used in agriculture to prevent or control pests, dis-
eases, weeds, and other plant pathogens to reduce or eliminate
yield losses and maintain high quality of agricultural products.
They are intentionally used to cause adverse effects on target
organisms; but adverse effects in non-target organisms may arise
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Currently, the integrated management of pest, diseases and
weeds, seeks to maximize crops production and, at the same
time, to reduce the impact of pesticides on living beings and on
the environment by making better use of them at socially
acceptable and economically viable levels [Villaverde et al., 2019].
For this reason, pesticides are developed through very strict,
complex and time-consuming regulation processes [Reg.EC 1107/
2009] to function with reasonable certainty (reduce the uncer-
tainty) and minimal impact on human health and the environ-
ment. In addition, Directive 2009/128/EC [European Commission]
promotes the sustainable use of pesticides through the integrated
pest management. Pesticide registration is a scientifically-based,
legal, and also administrative process, where the potential to
cause adverse effects on human health and the environment
associated with the use of pesticide products, is assessed by
conducting several tests [Reg.EU 283/2013]. Effects in any non-
target species may translate into ecosystem unbalance and
food-chain disruption that ultimately may affect human health
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and edible species [Damalas et al. 2011]. As mentioned, regula-
tory bodies rely on extensive in vivo and in vitro testing to sup-
port regulatory decisions on human health and environmental
risks. It is a known fact that in vivo tests often require a large
number of laboratory animal studies which can consume signif-
icant amounts of resources in terms of budget and time for
testing and evaluation. Alternatives to animal testing [Reg.EU
283/2013] were proposed to overcome some of the drawbacks
associated with animal experiments and avoid the unethical
procedures. In silico methods, based on quantitative structure-
activity relationships (QSAR) are worldwide recognized alterna-
tives to animal testing as well as cells and tissue cultures, alter-
native organisms, lower vertebrates, invertebrates and
microorganisms [Ranganatha et al.][Doke et al.][Scholz et al.]
[Villaverde et al., 2017]. QSAR can potentially result in significant
cost savings during the pesticide safety assessment process,
having a great economic impact for the agrochemical sector. The
reduction in the necessary laboratory or field evaluations will
decrease time and cost, leading to faster commercialization of
formulations and thus promoting the productivity and competi-
tiveness of European agriculture. In silico tools are especially
important when experimental studies are not adequate because
of ethical reasons or because experimental studies are either too
complex or not viable [Villaverde et al., 2017] [Zhu et al.].

QSAR models are based on a variety of mathematical ap-
proaches to predict activities and properties of untested chem-
icals on the basis of their molecular structure. QSAR methods
have a long history of use both for the design pre-synthesis and
the regulatory assessment of pharmaceuticals, pesticides, and
other chemicals [TWG on Pesticide 2012]. Therefore, considering
the limitations of current testing approaches, the growing public
attention for ethical issues related to in-vivo tests and breedings,
and the rapid development and the advantages of computational
predictive methods, companies and Regulatory Agencies have
started in the last decade to support the use of QSARs to enhance
the efficiency of hazard and risk assessment processes [ECHA]
[76/768/EEC]. In particular, in 2007 the European REACH regu-
lation (Regulation Evaluation Authorization of Chemicals) [Reg.
EC 1907/2006] promoted the regulatory use of in silico (i.e.
models, grouping and read across procedures) and in vitro al-
ternatives to animal testing. Since then, specific Guidance Doc-
uments and other tools were made available by the Organization
for Economic Cooperation and Development (OECD), the Euro-
pean Chemical Agency (ECHA) [ECHA] [OECD 2015] and the EU
commission JRC [Triebe et al.], to increase the transparent use of
these methods.

In line with the current regulatory approaches mentioned
above, the aim of the present work was, to use data collected
within a project commissioned by the European Food Safety
Authority (EFSA) [Galimberti et al.] to estimate pesticide eco-
toxicity values on the basis of their chemical structure. In
particular, data measured for aquatic organisms representative of
different levels of biological complexity were used for the crea-
tion of ad hoc QSAR models. These approaches, which are pro-
posed as alternative methods in the Guidance on tiered risk
assessment for edge-of-field surface waters [EFSA J. 2013], should
serve as quantitative tools to predict the Effect Concentrations
(ECx) of other substances of interest having no experimental
toxicity data available. Ecotoxicological studies are designed to
identify the adverse effects produced by a substance to selected
species and to characterize the dose-response relationship for
the adverse effects. The aim of the present work is to maximize
the toxicological information available to describe the whole set
of 70 pesticides within different taxonomic groups by using
chemometric approaches.
2. Material and methods

2.1. Dataset and data control

Within the project “Comparison of NOEC values to EC10/EC20
values, including confidence intervals, in aquatic and terrestrial
ecotoxicological risk assessment” a collection of data from the
ecotoxicological section of 70 pesticide approval dossiers was
performed [Galimberti et al.]. Ecotoxicological data of studies from
the pesticide approval dossiers have to strictly follow internation-
ally agreed test guidelines, such as OECD or US-OPPTS. These
guidelines allow a high standardization of the study performance
and consequently the results. Moreover, in the aforementioned
collection of data [Galimberti et al.] ecotoxicological studies have
been peer reviewed from National Experts in the pesticide assess-
ment procedure and these data have been processed through a
statistical modelling analysis performed, in 2015, by the Wage-
ningen University. The pesticides were mainly distributed through
the herbicide, fungicide and insecticide pesticide functional classes
(respectively: 32, 44 and 19% and 5% of combinations of functional
classes). Only studies concerning chronic toxicity were taken into
account and in particular on the following taxa: algae, aquatic in-
vertebrates, aquatic plants, birds, earthworms, fish, mammals, non-
target plants, soil arthropods and terrestrial arthropods. Different
effects were investigated with numerous biologic parameters.
Among all the effects, development, growth and reproduction of
the different tested organisms were the most frequent in the pool
of selected studies. All the data were managed and stored into an
MS Access database. The database consisted of 952 single entries
collected for different pesticide active substances tested in different
taxa, species, effects and biologic parameters (like Cell count,
length, weight, young produced.) in addition to information related
to time of exposure as well as the number of tested doses, and the
dose max. Each substance was characterized by the CAS Registry
Number, the molecular formula, and the molecular weight. The
single entries were EC10, EC20 and EC50 values (with their upper and
lower confidential limits) and the NOEC value (calculated and re-
ported from the pesticide study tests). A subset of the dataset (only
studied aquatic organisms) is reported in supplementary material.
To create a strong dataset in order to build robust QSAR models,
data (as reported in the supplementary materials) were curated
according to the following steps:

- Presence of mixtures and stereoisomeric compounds in the
studied samples (pesticides). In general, mixtures cannot be run
through QSARmodels, nor can synergistic or antagonistic effects
of chemicals in mixtures be accounted for because models
typically use single, discrete chemical structures as input.
Regarding stereoisomeric pesticides, the user should be aware
that QSAR predictions generated by using representative 2D
structure do not accurately reflect the true 3D conformation of
the active ingredients, i.e. they miss information on stereo-
chemistry [TWG on Pesticide 2012].

- Grouping data for data consistency. According to the ’Guidance
on tiered risk assessment for plant protection products for aquatic
organisms’ [EFSA PPR 2013] and on the basics of statistical ho-
mogeneity, data on substances were aggregated by the same
taxa, species, effects and biologic parameters on a first attempt
of analysis.

- Outliers. An outlier is an observation point that is distant from
other observations; it may be due to variability in the mea-
surement or it may indicate experimental error which might be
sometimes excluded from the data set. In QSAR, compounds that
have unexpected biological activity and are unable to fit in a
QSAR model are known as outliers. These are valuable in
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defining the limitations under which compounds act by a
common molecular mechanism modelled by one or more de-
scriptors, and also in defining the experimental limitations of
the biological test data. Thus, particular attention should be
payed to the outliers and the reason for their peculiarity be
sought [Rajeshwar et al.].
2.2. Molecular descriptors

The SMILE strings available for the 70 active substances were
imported into the PaDEL descriptor software [Yap] for the calcula-
tion of the molecular descriptors. The SMILE Notation, an acronym
which stands for Simplified Molecular Input Line Entry System, i.e.
a string notation used to describe the nature and topology of mo-
lecular structures, were derived according to the PubChem Project
[Pubchem], and where available, these notations were compared
with the ones reported in the approval dossiers of the active sub-
stances to cross-validate the information acquired. The SMILE No-
tation was retrieved because is the starting point to calculate the
molecular descriptors for the selected active substances. Molecular
descriptors [Todeschini et al.], are the final result of a logic and
mathematical procedure which transforms chemical information
encoded within a symbolic representation of a molecule, into a
useful number. Version 2.21 of PaDEL was used; all the 1D, 2D
descriptors were calculated and also the PubChem fingerprints. The
number of calculated descriptors (1875) with PaDEL software [Yap]
was large, and included molecular descriptors and fingerprints in
order to have the possibility to represent different features of the
chemical structure in different ways. However, a lot of them
resulted to be inter-correlated and redundant, giving very similar
structural information. For this reason a pre-filtering procedure
was applied to the dataset to exclude semi-constant descriptors (no
information brought by the variable itself) and to exclude de-
scriptors too inter-correlated (same information brought by many
variables). Constant variables were excluded if greater than 80%
and inter-correlated variables were excluded if correlated for a
percentage greater than 90%. After this procedure, the number of
remaining variables was 525. This data curation procedure was
performed with QSARINS Software [QSARINS][Gramatica et al.,
2013] [Gramatica et al., 2014].

2.3. QSAR modelling

The dataset was prepared to be used as the input for the QSAR
model generation i.e. all the responses were converted into mmol/L
and transformed into Log (ECx). Multiple linear regression (MLR)
QSAR models by OLS (Ordinary Least Squares) method and Genetic
Algorithm for variable selection were generated and validated in
the software QSARINS.

Principal ComponentAnalysis (PCA) [WoldS. et al.,1987]was then
performed on the curated molecular descriptors, in order to explore
the distribution of the data in the chemical and experimental space,
and to highlight possible outliers and/or particular clusters/patterns.

The next step was the development of the QSAR models ac-
cording to the OECD principles for the development of QSARs for
regulatory use [OECD 2004][OECD 2007].

Asmentioned above the software QSARINSwas used to generate
MLR-OLS models. In a first step, exhaustive selection was per-
formed by exploring the fitting of all the possible combinations of
up to 2 variables included in the models. In a second step, a se-
lection procedure based on a Genetic Algorithm (GA), was used to
select the best population of models. The statistical quality of the
models was determined by quantification of the coefficient of
determination R2, which represents the fitting ability of themodels,
and of the Q2leave-one-out and Q2leave-more-out (Q2loo and
Q2lmo, respectively) which represent the internal robustness of the
models [Wehrens et al.].

In particular, the GA evolution performed in QSARINS optimizes
the Q2leave-one-out parameter.

In addition, the QUIK rule (set to 0.03e0.05 value in this study)
was applied to control the risk of chance correlation, and ensure
that the total correlation among the descriptors selected in each
model is not higher than their correlation with the modelled
response. Furthermore the scrambling of the responses (i.e. Y
scramble) was performed to identify and exclude models possibly
obtained by chance [Rücker et al.][Gramatica et al., 2004]: low R2

and Q2loo values recalculated for each model applied on scrambled
responses are expected in the absence of chance correlation.

The best models, according to fitting and robustness were then
checked for their ability to predict the endpoint of interest for
external molecules i.e. not considered during the development/
calibration of the models. To perform the external validations the
data available for each response were divided (split) into training
and prediction sets before to run the GA. These sets were used to fit
the models and to check their external predictivity, respectively.
The splitting was performed by ranking the available data in
ascending order of the response and putting one every five
chemicals in the prediction set (i.e. 20% was set as prediction, while
the remaining 80% was kept in the training-set).

The external predictivity was quantified using multiple external
validation parameters, which are calculated by QSARINS such as Q2

ext-F1 [Shi et al.], Q2 ext-F2 [Schüürmann et al.], Q2 ext-F3 [Consonni
et al.], CCCext [Chirico et al.] [Chirico et al., 2012] [Lin], as well as the
RootMeanSquared of Errors (RMSE). This last parameter summarizes
theoverall errorof themodel in training, cross validationandexternal
sets (i.e. RMSEtr, RMSEcv, and RMSEext respectively). QSARINS also
provides the Mean Absolute Error (MAE) which is a measure of dif-
ference between two continuous variables (predicted and measured
variables), a commonmeasure to forecast errors.

Therefore, summarizing, the best models were selected as the
most externally predictive out of GA based populations, at different
levels of complexity and ranked according to decreasing robustness
(Q2loo, Q2lmo) and fitting (R2) [Cherkasov et al.].

Finally, the analysis of the applicability domain (AD) of themodels
allowed for the identification of influential and/or problematic com-
pounds (response and structural outliers). The leverage approachwas
used toquantify the structural spaceof themodels,whichdependson
themodelling descriptors and helps in the identification of chemicals
which are influent in the selection of themodelling descriptors or are
structurallydissimilar fromthe training set compounds. TheWilliams
plot (hat values vs standardized residuals for each chemical)wasused
to assess the presence of both response outliers (i.e. compoundswith
cross-validated standardized residuals greater than 2.5 standard de-
viation units), and structural outliers (i.e. compounds with leverage
value (h) higher than h* ((3 p þ 1)/n), where p is the number of var-
iables of themodel and n is the number of compounds in the training
set) [Sangion et al.]. TheWilliams plot is indeed a graph representing
the Standard residuals vs HAT i/i. The Hat value of leverage is used for
domain applicability assessment. Hat values represent the “distance”
of the molecules to the model structural space.

3. Results and discussion

3.1. Data setup

The combination of data available to describe pesticide active
substance of pesticide, taxa, species, effects and biologic parame-
ters resulted in a dataset of 952 single entries for aquatic and
terrestrial organisms. In the first screening of the data two
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substances were excluded from the dataset: Dodine and Pyrethrins.
These pesticides are mixtures of different chemical components
and as such they can’t be modelled by the here proposed QSAR
approach and were excluded from the dataset [ECHA 2008]. The
number of the single combinations, with the deletion of Dodine and
Pyrethrins records was reduced to 929. Duplicate values were
excluded as well as aquatic organisms were kept, and only valid
combinations of taxa-effect-parameter-species were kept for a total
number of 125 useful combinations for the calculation of the
models.

The following step taken in the data setup was to explore the
dataset of descriptors in order to find outliers that might bring to
uncertainties of results of the QSARmodels. A Principal Component
Analysis (PCA) was performed on the set 525 selected variables.

Fig. 1 shows the distribution of the 70 active ingredients in the
new PC1 vs PC2 space (about 25% of the total data variance). This
graph is useful to analyze the behavior of the samples (pesticides)
in the different Components and their similarity on the basis of the
structural information used as input for the analysis.

In Fig. 2 the scree plot shows the number of principal compo-
nents versus the corresponding eigenvalue. Eigenvalues represent
the variance explained by each PC in decreasing order with largest
value associated to PC1.

The scree plot is useful to determine how many principal
components are necessary to cover a percentage of variance of
about 80%. Usually the ideal pattern is a steep curve, followed by a
bend and then a straight line, behavior which is highlighted with
the circle in the figure. It means that in the first ten principal
components most of the information content is kept.

Fig. 3 is a matrix plot, i.e. a multiple plot generated from
different combinations of the first 10 PCs.

In particular the outliers are highlighted in light-blue in Fig. 3.
These pesticides (Amitrole, Chlorothalonil, Dazomet, Emamectin
and Lufenuron) appear structurally different from the other
chemicals in the matrix plot, and need to be carefully monitored in
the further analysis and model generation.
Fig. 1. Score Plot of the selected pesticides in the new
3.2. QSAR modelling

In a first step models were developed on the basis of split
datasets in order to provide external validations for the best com-
binations of variables selected for each endpoints from the
respective GA populations. All the possible combinations of the
selected descriptors were firstly explored up to two. The selected
Fitness function was the Q2loo function. The QUIK rule was set to
0.030 (i.e the model variables (X) to response (Y) correlation must
be at least 3% higher than within the X block). Then the Genetic
Algorithm was run up to four descriptors [Haupt et al.], using the
following settings: 2000 iterations (gen. per size), mutation rate of
65% and a population size of 500 models. The selection of the best
model within the final GA-based population took into account the
principle of the “Occam’s Razor”, i.e. law of parsimony, which states
that among competing hypothesis, the one with the fewest as-
sumptions should be selected. This law is usually applicable to
QSAR because large number of descriptors can make the interpre-
tation and explanation of the models more difficult, and often a
small number of molecular descriptors outperforms significantly
more complex combinations which may lead to overfitting
[Cherkasov et al.].

Table 1 shows the statistical parameters calculated for the
training and the prediction sets of the split models.

All the best split models reported in Table 1 have good fitting
performances (R2: 0.75e0.99) and therefore they are able to esti-
mate with good approximation the experimental data used for the
model development. These models are internally robust since they
can handle up to 30% of perturbationwith little/no change in Q2 loo
and Q2 lmo values ((Q2loo: 0.66e0.98; Q2 lmo: 0.64e0.98). The low
values of R2

Yscr (0.11e0.38) indicates that the models are not
affected by chance correlation. The statistical parameters calculated
to quantify the external predictivity of the models were all satis-
fying according to thresholds reported in the literature [Tropsha].
The range of Q2 ext-Fn: 0.53e0.96 suggests that the models are
reasonably predictive when applied to chemicals that were not
XY space: PC1 (E.V.% 17.9%) vs PC2 (E.V.% 14.6%).



Fig. 2. Scree Plot displays the number of the principal components versus its corresponding eigenvalue. Cumulative variance and variance of each components are showed too.

Fig. 3. Matrix Plot: in this graphic are presented all the combination of the scores of the PCA of the first 10 PCs.
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involved in the development of the models.
In addition the RMSEext values of each model on external

chemicals were very close to the RSMEtr on training chemicals. This
confirms that the models had similar accuracy both in fitting and in
prediction and thus a good degree of generalization.

Table 2 reports the molecular descriptors combination selected
by the GA for each dataset and their relative importance, based on
the standardized coefficients, and their definition.

In addition, Table 2 lists the descriptors selected in the models
and provides a general description of these variables. Most of them
are calculated from 2D structural information encoded into SMILES
(supplementary materials section) on the basis of connectivities
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within the molecules and atomic properties such as electronega-
tivities and polarizabilities. We want to highlight that these de-
scriptors do not encode for specific fragments, but they capture
global properties of the molecular structure such as spatial auto-
correlations (2D autocorrelation), molecular heterogeneity
(BCUTS), and electronic accessibility (E-State), which may be
quantified by complex calculations. Differently, Pubchem Frag-
ments listed in Table 2 encode for specific patterns in the structures,
therefore the presence/absence of these specific chemical features
(e.g. functional groups or molecular portions) in a model can be
easily directly associated to variations in the studied effect.

A more in depth comment of these descriptors is provided in the
following sections. However, regarding the interpretation of these
molecular descriptors it is necessary to bear in mind that the here
proposed models consist of multivariate combinations of de-
scriptors selected through a statistically driven procedure (i.e. GA-
based selection). Therefore, none of the descriptors can indepen-
dently explain the behavior of the modelled endpoint i. e only the
combination of descriptors allows the accurate modelling of the
studied responses.

The plot of experimental versus predicted toxicity values for
both the full and the split models are reported, as well as an
example of Williams plot (i.e. representative for the split model),
which describes the model’s AD.

Therefore, having verified the predictive ability of the best var-
iables selected by the GA for each modelled endpoint, and
considering the limited amount of chemicals included in each
training set, the best equations were newly calibrated using all the
available experimental information (Full model).
3.3. QSAR model for algae

3.3.1. Selenastrum capricornutum toxicity test AL1- endpoint based
on growth (cell count)

The full model for EC50 in Selenastrum capricornutum was cali-
brated on 28 pesticides. The endpoint, expressed as Log (EC50),
ranged from�2.47 to 2.45 mmol/L (i.e. from 1.19 to 71,600 mg/L). The
equation of the full QSAR model, and relative plots (Fig. 4) for AL1
are given below:

LOGðEC50ÞAL1 ¼0:45þ 1:55MATS8e�1:28PubchemFP645
�4:78MATS4e� 1:33PubchemFP346

(1)

N ¼ 28 R2 ¼ 0:82 Q2
loo ¼ 0:73 Q2

LMO ¼ 0:70 R2
Yscr ¼ 0:15

RMSEtr ¼ 0:55 RMSEcv ¼ 0:66
MAEtr ¼ 0:42 MAEcv ¼ 0:52

The most important variables selected in this model are two
Moran autocorrelation coefficients [Todeschini et al.] [Todeschini
et al., 2000] MATS4e (std. Coefficient �0.51) and MATS8e (std.
Coefficient 0.42). These variables, encode for structural information
related to the degree of autocorrelation between numerical values
of a property (i.e. electronegativity) at a specific topological dis-
tance (i.e. distance 4 and 8, respectively). The other variables
selected in the model are Pubchem Fingerprints. These descriptors,
as specified above, are Boolean values reflecting the presence or not
of a chemical characteristic in a chemical structure. In particular,
PubchemFP645 and 346 [SMARTS Theory] (std. Coefficient �0.45
and �0.52) refer to O]CeNeCeC and C (~C) (~H) (~O) fragments,
respectively. In this dataset, the presence of both fragments in the
molecular structure, in addition to negative values or values close
to zero of the autocorrelation descriptors increases the toxic



Table 2
Selected molecular descriptors for each model.

Combinations Descriptors Std
coefficient

Range Definition

(full
model)

min max

AL1 MATS8e 0.42 �0.67 1.33 Moran autocorrelation - lag 8/weighted by Sanderson electronegativities (2D)
AL1 PubchemFP645 �0.45 0.00 1.00 O¼CeNeCeC; Simple SMARTS patterns - These bits test for the presence of simple SMARTS patterns, regardless

of count, but where bond orders are specific and bond aromaticity matches both single and double bonds.
AL1 MATS4e �0.51 �0.75 0.35 Moran autocorrelation - lag 4/weighted by Sanderson electronegativities (2D)
AL1 PubchemFP346 �0.52 0.00 1.00 C (~C) (~H) (~O); Simple atom nearest neighbors - These bits test for the presence of atom nearest neighbor

patterns, regardless of bond order (denoted by "~") or count, but where bond aromaticity (denoted by ":") is
significant.

AI4 BCUTp-1h 0.92 6.34 13.43 nlow highest polarizability weighted BCUTS (eigenvalue-based descriptors)
AI4 MIC0 �0.66 9.90 40.94 Modified information content index (neighborhood symmetry of 0-order)
AI4 PubchemFP12 �0.80 0.00 1.00 � 16 C; Hierarchic Element Counts - These bits test for the presence or count of individual chemical atoms

represented by their atomic symbol.
AP5 BCUTc-1l 0.84 �0.41 �0.24 nhigh lowest partial charge weighted BCUTS (eigenvalue-based descriptors)
AP5 maxwHBa 0.56 0.00 5.31 Electro topological State Atom Type Descriptor: Maximum E-States for weak Hydrogen Bond acceptors
FS6 SpMax5_Bhi �0.63 1.23 3.74 Burden Modified Eigenvalues Descriptor: Largest absolute eigenvalue of Burden modified matrix - n 5/weighted

by relative first ionization potential
FS6 minaaCH �0.40 0.00 2.29 Electro topological State Atom Type Descriptor: Minimum atom-type E-State::CH:
FS6 PubchemFP613 0.67 0.00 1.00 CeNeCeCeC; Simple SMARTS patterns - These bits test for the presence of simple SMARTS patterns, regardless of

count, but where bond orders are specific and bond aromaticity matches both single and double bonds.
FS7 GATS6e 0.48 0.00 2.19 Geary autocorrelation - lag 6/weighted by Sanderson electronegativities
FS7 SRW5 0.43 0.00 4.26 Walk Count Descriptor: Self-returning walk count of order 5 (ln (1þx)
FS7 PubchemFP179 �0.86 0.00 1.00 � 1 saturated or aromatic carbon-only ring size 6; Rings in a canonic Extended Smallest Set of Smallest Rings

(ESSSR) ring set - These bits test for the presence or count of the described chemical ring system.

Fig. 4. The plot of experimental versus predicted endpoints for AL1 for the split model (left), for the full model (middle) and Williams plot for AL1 (right).
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potency of the chemicals (more negative Log (EC50)).
3.4. QSAR model for aquatic invertebrates

3.4.1. Daphnia magna toxicity test AI4- endpoint based on
reproduction (young produced)

The Log (EC50) for the 29 pesticides with available data in
Daphnia magna ranged from �4.37 to 3.93 mmol/L. The equation of
the full QSAR model, and related plots (Fig. 5) for AI4 are given
below:

LOGðEC50ÞAI4 ¼ �11:09þ1:42BCUTp�1h�2:61PubchemFP12

� 0:16MIC0

(2)

N ¼ 29 R2 ¼ 0:75 Q2
loo ¼ 0:66 Q2

LMO ¼ 0:64 R2
Yscr ¼ 0:11

RMSEtr ¼ 0:77 RMSEcv ¼ 0:90 MAEtr ¼ 0:63 MAEcv ¼ 0:74
The BCUTp-1h descriptor [Pearlman et al.][Burden et al.][Burden
et al., 1997][Kang et al.] (std. Coefficient 0.92) is the most important
descriptor in the model. This variable takes into account both
connectivity and atomic properties relevant to intermolecular in-
teractions. B-CUT descriptors are calculated from a matrix repre-
sentation of the molecular graph where diagonal elements encode
for atomic properties such as, in this case, polarizability. In the
proposed equation BCUTp-1h is positively correlated with the
response, therefore the most toxic compounds in the present
dataset are characterized by small values of the B-CUT descriptor.

The PubchemFP12 fragment [Pubchem fingerprints] (std.
Coefficient �0.80) comes from the Hierarchic Element Counts and
brings information related to molecular dimension and atom di-
versity (i.e. number of C atoms equal to or greater than 16). Since
this descriptor is inversely related to the endpoint, the absence of
the aforementioned pattern (i.e. PubchemFP12 ¼ 0) is associated
with low toxicity values (i.e. large Log (EC50)). Finally the MIC0
descriptor [Todeschini et al., 2000] (std. Coefficient �0.66) is an
index of neighborhood symmetry (Modified information content
index - neighborhood symmetry of 0-order).



Fig. 5. The plot of experimental versus predicted endpoints for Al4 for the split model (left), for the full model (middle), and Williams plot for Al4 (right).
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3.5. QSAR model for aquatic plants

3.5.1. Lemna gibba toxicity test AP5 - endpoint based on growth
(frond number)

This dataset is very limited and composed only of 13 pesticides
with Log (EC50) values ranging from �2.86 to 2.78 mmol/L. The
equation of the full QSAR model, and related plots (Fig. 6) for AP5
are given below:

LOGðEC50ÞAP5 ¼6:14þ0:84BCUTc1l� 2:26maxwHBa (3)

N ¼ 13 R2 ¼ 0:94 Q2
loo ¼ 0:90 Q2

LMO ¼ 0:89 R2
Yscr ¼ 0:17

RMSEtr ¼ 0:39 RMSEcv ¼ 0:52 MAEtr ¼ 0:33 MAEcv ¼ 0:43

Also in this model a descriptor from the burden group is selected
as the most relevant, i.e. BCUTc-1l (std. Coefficient 0.84). As
mentioned above modified burden descriptors encode for the dis-
tribution of a property (partial charge in this case) in the molecule
[Todeschini et al., 2000]. In this dataset the value of this descriptor
BCUTc-1l increases (i.e. becomes more negative) with chemical
dimension and is directly correlated with the response (i.e. more
toxic chemicals have large negative BCUTc-1 values). In addition,
the descriptor maxwHBa (Maximum E-States for weak Hydrogen
Bond acceptors - std. Coefficient 0.56) is directly correlated to the
studied endpoint.
Fig. 6. The plot of experimental versus predicted endpoints for AP5 for the split
3.6. QSAR models for fish

3.6.1. Pimephales promelas test FS6- endpoint based on growth
(length)

The dataset available to model EC50 in Pimephales promelaswas
also very small, with toxicity values, expressed as Log (EC50),
between �2.91 and 2.34 mmol/L. The equation of the full QSAR
model, and related plots (Fig. 7) for FS6 are given below:

LOGðEC50ÞFS6 ¼7:49þ2:43PubchemFP613�0:69minaaCH

� 2:67SpMax5 Bhi

(4)

N ¼ 12 R2 ¼ 0:96 Q2
loo ¼ 0:94 Q2

LMO ¼ 0:93 R2
Yscr ¼ 0:27

RMSEtr ¼ 0:29 RMSEcv ¼ 0:37 MAEtr ¼ 0:21 MAEcv ¼ 0:29

As for the QSAR model developed for Lemna gibba it should be
noted that this model is based on a very limited number of data. The
limited external predictivity of the model reported in Table 1 is due
to the exclusion of essential structural information from the
training set. This information is important to help the calibration of
the coefficients of the model for an accurate prediction of com-
pounds Epoxiconazole and Carbosulfan which behave as strong
outliers in the split model. However the full model is robust when
checked for cross validation.
model (left), for the full model (middle), and Williams plot for Al5 (right).



Fig. 7. The plot of experimental versus predicted endpoints for FS6 for the split model (left), for the full model (middle), and Williams plot for FS6 (right).
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Themost important descriptors in the model are the Fingerprint
PubchemFP613 and the descriptor minaaCH from the electro-
topological state indices. PubchemFP613 checks for the presence of
the CeNeCeCeC SMARTS pattern. The most toxic among the
chemicals investigated for toxicity to Pimephales i.e. Pyridaben and
lambda-Cyalothrin miss this fragment in their molecular structure;
the descriptor minaaCH (i.e. Minimum atom-type E-State aroma-
ticeCHearomatic) encodes information related to the connectivity
of a specific atom (topological environment) and the electronic
interactions due to all other atoms in the molecule. The topological
relationship is based on the graph distance to each other atom.
Atom-type E-state indices are calculated by summing the E-state
values (e.g. electronic information) of all atoms of the same atom
type in the molecule [Todeschini et al., 2009]. These descriptors
help to capture information associated to electronic accessibility of
an atom therefore the probability of interaction with another
molecule. In this model the selected E-state descriptor is inversely
correlated to the studied endpoint. Finally the SpMax5_Bhi belongs
from the eigenvalue-based descriptor family [Todeschini et al.,
2009] and takes into account molecular heterogeneity based on
atoms electronegativities weighted by ionization potential. In the
studied dataset large chemicals, have large values of this descriptor
which is inversely related with the studied endpoint (i.e. large
SpMax5Bhi values corresponds to small Log (EC50) values).
3.6.2. Oncorhynchus mykiss toxicity test FS7- endpoint based on
growth (weight)

The Log (EC50) expressed in mmol/L measured for the 12 pesti-
cides for Oncorhynchus mykiss ranged from �2.25 to 2.73. The best
results were obtained using three variables (shown in equation (5)).
The full QSAR model, and relative plots (Fig. 8) for FS7 are given
below:

LOGðEC50ÞFS7 ¼ �0:56þ1:68GATS6eþ0:464SRW5

� 2:54PubchemFP179 (5)

N ¼ 12 R2 ¼ 0:96 Q2
loo ¼ 0:92 Q2

LMO ¼ 0:91 R2
Yscr ¼ 0:27

RMSEtr ¼ 0:25 RMSEcv ¼ 0:35 MAEtr ¼ 0:22 MAEcv ¼ 0:33

The GATS6e Descriptor Geary autocorrelation - lag 6/weighted
by Sanderson electro-negativities is part of the Autocorrelation
descriptors. The Geary coefficient is a distance-type function
varying from zero to infinity. Brings information related to chemical
complexity/heterogeneity and is positively related to the studied
endpoint [Todeschini et al., 2009]. The PubchemFP179 Fragment is
part of a class of descriptors which tests the presence of a specific
chemical ring system. In the studied dataset, this descriptor helps
to identify chemicals that present at least one or more saturated or
aromatic carbon-only ring of size 6, which tend to be more toxic
(i.e. lower toxicity values) than chemicals characterized by the
presence of other ring systems (e.g. heterocycles or
heteroaromatic).

The SRW5 is part of theWalk Count Descriptors and it is defined
as the Self-returning walk count of order 5 (ln (1þx). This is a
simple molecular descriptor based on counting defined elements of
a compound [Todeschini et al., 2009] and it brings information
related to molecular dimension and the presence of rings.

It should be noted that the complexity of Eq. (5) (i.e. number of
variables) is rather high considering the dimension of the training
set. Therefore, in order to be in agreement with the parsimony
principle, best solution would be, in a future refinement, to find a
combination of lower complexity and comparable accuracy as
Equation (5) or, as an alternative to increase the number of samples
for the training/prediction sets.

3.7. Evaluation of the applicability domain of the proposed QSARs

After assessing the robustness and predictivity of all models, it is
interesting to analyze, for each taxa, the percentage of predicted
data which fall inside the applicability domain (AD) of the
respective QSAR. Results of this analysis are shown in Table 3. All
the ADs of the developed models showed a good coverage of the
dataset demonstrating that the predictions generated by these
QSARs are reliable for several pesticides. This is interesting
considering the limited amount of data originally available for some
of the endpoints (i.e. 12-13 data points). The number of pesticides
falling inside the ADs of all the models is 51 (75% of all selected
pesticides), i.e. considering only the interpolated, reliable
predictions.

The distribution of molecular weight were investigated too,
without any noticeable meaning.

3.8. Investigation of the multi-specie toxicity profile of the studied
pesticides

Principal Component Analysis (PCA) was used to investigate the
toxicity profile of the studied pesticides according to their experi-
mental or estimated toxicity in different taxa. The PCA was firstly
performed on the 51 pesticides which had all interpolated



Fig. 8. The plot of experimental versus predicted endpoints for FS7 for the split model (left), for the full model (middle), and Williams plot for FS7 (right).

Table 3
Percentage of pesticides, over a total of 68, falling outside the Applicability Domain of each determined QSAR model and considering the whole set of models together. In the
last column all the pesticides falling outside the applicability domain of each determined model are reported. Highlighted with an asterisk (*), the pesticides previously
identified as outliers of the multivariate analysis (Amitrole, Chlorothalonil, Dazomet, Emamectin and Lufenuron).

Taxa (code e training
set)

Species Outside AD Pesticides Outside AD

Algae (AL1 - 28) Selenastrum
capricornutum

2.9% (2/68) 2-4D, Methomyl

Aq. Invertebrates (AI4 -
30)

Daphnia magna 4.4% (3/68) Amitrole*, Iodosulfuron, Lufenuron*

Aquatic Plants (AP5 - 14) Lemna gibba 8.8% (6/68) Dodemorph, Flumioxazin, Imazalil, Oxadiargyl, Oxamyl, Spiroxamine
Fish (FS6 - 13) Pimephales promelas 4.4% (3/68) Amitrole*, Chlorothalonil*, Methomyl
Fish (FS7 - 13) Oncorhynchus mykiss 11.8% (8/

68)
Amitrole*, Chlorothalonil*, Clothianidin, Epoxiconazole, Imidacloprid, Lambda-Cyhalothrin, Methomyl,
Tefluthrin

Aquatic Organisms All the cited above 25% (17/
68)

All the above cited pesticides
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predictions, using only predicted values. The biplot (i.e. plots of the
loadings and of the scores) is presented in Fig. 9 whereas Fig. 10
shows the Loading plots for the aforementioned PCA.

In all the loading plots, each loading aims at the direction of
maximum Log (EC50), i.e. high distance from the center of the axis
corresponds to low toxicity for the displayed taxa. On the left side
of Fig. 9 (i.e. PC1 vs PC2 biplot) there are the active ingredients
which tend to be toxic to all the species. These compounds should
be prioritized as the most hazardous for the aquatic environment
represented in this study and are listed Table 4.

PC2 discriminates between autotrophic (negative) and hetero-
trophic (positive) organisms: algae and aquatic plants stand
completely separated from the rest of the loadings in PCs where
PC2 is present, so this distinction is quite clear and this PC can be
used as descriptor for toxicity of Aquatic Algae (AL1) and Aquatic
Plants (AP5) vs. Invertebrates (AI4) and Fish (FS6 and FS7). For
example in the PC1vsPC2 graph, herbicides (in green), which are
the most notable pesticides for aquatic plants and algae, are dis-
played on the opposite of AL1 and AP5 loadings.

These patterns were identified also in the PCA based on the
integration of experimental and predicted toxicity values which
supports the reliability of the here proposed QSARs.

In addition we attempted to categorize the 51 studied sub-
stances on the basis of toxicity thresholds for hazard character-
ization as proposed by US EPA Aquatic Risk Assessment [EPA]. In
particular, three levels of aquatic toxicity concern for acute and
chronic toxicity are used in this approach, which are shown in
Table 5. The PCA biplot with scores labelled according to the pro-
posed categorization is shown in Fig. 11.
Even if NOEC or EC10 values would be more suitable for the
aforementioned categorization, we performed our analysis on the
basis of EC50 data (experimental and predicted) available in the
present work which were categorized according to the pattern
proposed by the US EPA reported in Table 5. High-concern pesti-
cides were identified as those which counted 4 or more than 4 EC50
values exceeding the EPA thresholds on the basis of 5 species;
medium-concern pesticides were identified as those which coun-
ted 2 or 3 EC50 values exceeding the EPA thresholds; low-concern
pesticides were identified as those which counted less than 2
EC50 values exceeding the EPA thresholds Table 6.

While only three of the potentially most hazardous pesticides
belongs to the insecticides and nematocides classes, more than 15
belong to the fungicide and herbicides classes. The use of these
molecules should be monitored as well as their fate in the envi-
ronment because of the potential hazard they may pose to non-
target aquatic organisms.

3.9. Further considerations

Regulation (EC) No. 1107/2009 encourages the use and devel-
opment of non-experimental tests to anticipate the possible health
and environmental risks of pesticides [Villaverde et al., 2017], but
the current regulatory pesticide toxicity testing and assessment
approaches, in the framework of environmental risk assessment,
remain to a large extent based on a checklist of in vivo tests, con-
ducted in accordancewith standardized test guidelines or protocols
such as OECD Test Guidelines.While this approach has evolved over
the past half century, it is unlikely to efficiently meet legislative



Fig. 9. Biplot of the PCA.

Fig. 10. Loading plots of the PCA
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mandates that require increased numbers of chemical assessments
to be undertaken without a concomitant increase in the use of
animals and resources. New approaches are necessary to close the
gap between the number of chemicals in use and the number
assessed to date. Modern computational methodologies for
toxicological testing and chemical risk assessment are currently a
topic of great interest amongst researchers and the regulatory
community, because of their potential for predicting chemical
toxicity and reducing animal testing [Benfenati et al., 2017]. As
mentioned above, the EU Regulation on pesticides still provides, as



Table 4
Most hazardous pesticides for aquatic compartment among the dataset according to PC1 ranking of EC50 mg/L].

Pesticide Category Most hazardous pesticides for aquatic organism

Fungicides Trifloxystrobin; Fenpropimorph; Kresoxim-methyl; Dinocap; Dimoxystrobin; Quinoxyfen
Herbicides Cyhalofop-butyl; Ethoxysulfuron; Aclonifen; Phenmedipham; Chlorsulfuron; Flurtamone; Flufenacet
Insecticides Pyriproxyfen; Formetanate
Nematocides Phenamiphos

Table 5
EPA aquatic toxicity concern.

Low Concern Moderate Concern High Concern

Acute >100 mg/L 1e100 mg/L <1 mg/L
Chronic >10 mg/L 0.1e10 mg/L <0.1 mg/L

Table 6
Classes concern toxicity based on count of high-concern pesticides according to EPA
scheme.

Green Orange Red

Count of High-Concern over the 5 aquatic species <2 [ 2e3 ] � 4
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mandatory data requirements, that ecotoxicological studies have to
be performed to test aquatic toxicity of substances. The EFSA
Guidance on tiered risk assessment for plant protection products
for aquatic organisms in edge-of-field surface water opens a win-
dow on in silico tests, but it also aims the attention at a major
concern, i.e. the danger of underestimating the real toxicity or
hazard of the given substances. As a consequence, it is, currently,
difficult that non-testing methods replace in vivo studies in the risk
assessment as they are not legally accepted as data requirements.
What lacks is a global repository of harmonized, structured and
certified data in order to reduce uncertainty which is actually the
big problem of in silico strategies [Villaverde et al., 2019], even if,
for example, EFSA has recently launched calls for tenders for the
creation of datasets that may be used for the development of
pesticide-oriented computational tools. In the US, the regulation on
Fig. 11. PC1 E.V.% 34.7 e PC2 E.V.% 27.0. As expected moderate a
pesticides, relies on the Integrated Approaches to Testing and
Assessment (IATA): IATA have the potential to integrate existing
data on pesticides with the results of alternative methods (e.g.,
biochemical/cellular assays, QSAR) leading to the refinement,
reduction, and/or replacement of conventional test requirements
[TWG on Pesticide 2012]. Nowadays the European Union science
hub is going to integrate the IATA approach to the EU context and
this might open a window to new perspectives and innovative
scenarios. [Kolesnyk], [Jaworska], [Villaverde et al., 2019].

4. Conclusions

Ecotoxicological data of aquatic organisms gathered from 70
active substances’ approval dossiers were collected into a storage
MS Access database. In particular pesticide Effect Concentrations
nd high concern chemicals are grouped on the left side PC1.
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for Selenastrum capricornutum (green alga), Daphnia magna
(aquatic invertebrates), Lemna gibba (aquatic plant), Pimephales
promelas and Oncorhynchus mykiss (fresh water fish) were
collected. The EC50 were derived for specific combinations of pes-
ticides, species, toxicological effects and biological parameters
selected to measure the different effects.

The present study extends the completeness of the set of EC50
data for all the above cited monitored species and for all the 70
selected pesticides. The here proposed QSAR models, which were
adequately built and tested by internal and external validations,
had good statistical performances as well as satisfactory applica-
bility domains. In particular, the good coverage of the dataset
demonstrated that the predictions could be used reliably to predict
Log (EC50) data for several categories and different families of
pesticides whose toxicity for aquatic organisms is completely un-
known. The Principal Component Analysis of the interpolated
predictions was performed to assess the toxicological profile of the
studied pesticides in a simplified aquatic scenario described by
experimental and predicted toxicity data for 5 species. Some
interesting information were derived from this multivariate anal-
ysis such as the separation of the toxicity of the studied compounds
for autotrophic and heterotrophic aquatic organisms. Finally, a
priority list of the potentially most hazardous compounds on the
basis of combinedmeasures of toxicity for the aquatic environment
was compiled on the basis of the combination of QSARs predictions
and multivariate analysis.

4.1. Recommendations

Due to the importance of the ecotoxicological endpoints in the
pesticide environmental risk assessment process, the present work
does not have any conceit to substitute the risk assessment itself
but it sets some predictions and a priority list, which may be of use
in the general a priori assessment of the potential hazard of the
pesticides.
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